科學研究

化工學院黃文歡團隊在《Advanced Functional Materials》上發(fā)表MOF基低硅負極研究工作

2024-02-01 11:01 文/化工學院 姬占有 圖/黃文歡 點擊:[]

近日,陜西科技大學化學與化工學院黃文歡教授團隊在Advanced Functional Materials期刊發(fā)表題為“Ultra-Low 4.3 wt% Silicon Thermal Reducing Doped Porous Si@MoC as Highly Capable and Stable Li-Ion Battery Anode”的研究論文,博士生陳卓為論文的第一作者。

由于電動汽車和設備的能源需求嚴峻,開發(fā)高能量、長循環(huán)壽命的鋰離子電池具有重要意義。硅作為鋰電池的新一代負極材料,以其高達約4200 mAh g?1的理論比容量和豐富的自然資源而備受關注。然而,硅在充放電多孔過程中不可避免的劇烈體積膨脹(≈300%)不僅削弱了電極和集流體的接觸,還導致了不穩(wěn)定的固體電解質間相(SEI)的形成。不可逆的容量退化和電池壽命的縮短被認為是阻礙其商業(yè)化的主要限制。

一般情況下,采用碳殼包覆硅納米顆粒的方式來減輕硅膨脹問題。然而,在電池循環(huán)過程中,電解質離子必須穿透碳殼,然后與硅反應,導致動力學效果不佳。碳基質也會存在不必要的結構變化。此外,高負載硅納米顆粒的聚集會導致硅的利用效率低,從而影響電池的長期性能。迄今為止,開發(fā)和設計高利用率的硅碳負極材料仍然是一個巨大的挑戰(zhàn)。

鑒于此,黃文歡教授團隊,采用ZnMo雙金屬雜化沸石咪唑酸鹽框架(HZIF-ZnMo),開發(fā)和設計了一種超低4.3 wt%的硅摻雜多孔MoC材料,并進一步探索了其在高容量鋰離子電池中的潛力(在0.2 A g?1下進行250次循環(huán)后,容量為976.6 mAh g?1)。研究表明,多孔MoC作為基底,不僅為鋰離子的快速擴散提供了連續(xù)的通道,還使超低含量的硅在多孔基體中高度均勻分布,有效誘導硅在循環(huán)過程中實現(xiàn)自身容量的最大利用,研究成果發(fā)表于學術期刊Advanced Functional Materials,題為“Ultra-Low 4.3 wt% Silicon Thermal Reducing Doped Porous Si@MoC as Highly Capable and Stable Li-Ion Battery Anode”

文章要點

點一:利用HZIF-ZnMo合成多孔Si@MoC(p-Si@MoC)

首先,利用水熱法合成了HZIF-ZnMo。隨后,通過將TEOS涂覆在HZIFZnMo上制備SiO2@HZIF-ZnMo,通過將正硅酸乙酯包覆在HZIF-ZnMo上制備SiO2@HZIF-ZnMo,通過簡單的熱還原,構建了超低約4.3 wt%摻雜Si的MoC多孔結構。反應保留了ZnMo咪唑框架的多面體結構并促進Si在多孔MoC基體內(nèi)的均勻分散。此外,為了研究Si和多孔結構在p-Si@MoC中的作用,我們還合成了多孔MoC(p-MoC)和非多孔MoC,并在后續(xù)的實驗中組裝成電池,進行比較。

圖1 多孔Si@MoC材料設計及合成

圖2 多孔Si@MoC的表征

通過X射線近邊吸收光譜(XANES)和擴展X射線吸收精細結構譜(EXAFS),驗證了Si摻雜在MoC基體中形成的Mo-Si鍵。通過密度泛函理論(DFT)的計算,揭示了多孔Si@MoC優(yōu)異的電導率和電子傳遞能力。

要點二:超低含量摻雜有效地誘導Si在p-Si@MoC中最大容量利用率

作為鋰離子電池負極材料,p-Si@MoC展現(xiàn)出了極小的電極/電解質界面阻抗(Rs)和電荷轉移阻抗(Rct)。值得注意的是,優(yōu)化后p-Si@MoC負極在250次循環(huán)后顯示976.6 mAh g-1的放電容量,而p-MoC在250次循環(huán)后的放電容量為800.6 mAh g-1。根據(jù)p-Si@MoC中Si的含量(4.3 wt%)計算出硅的理論容量為180.6 mAh g-1。因此,我們認為這種獨特的多孔結構可以最大限度地利用Si摻雜來提高容量,且Si的容量利用率可達97.5%。

為了進一步評估p-Si@MoC的循環(huán)穩(wěn)定性,在1 A g?1的電流密度下進行500圈次循環(huán)后,p-Si@MoC的可逆容量保持在485.8 mAh g?1,庫侖效率(CE)為98.9%。相比之下,p-MoC和MoC在500次循環(huán)后的放電容量分別為385.1和249.6 mAh g?1。值得注意的是,p-Si@MoC負極的高放電容量歸因于硅的摻雜和基體的多孔結構。與最近報道的不同成分和結構的硅基負極材料相比,p-Si@MoC中硅的含量更低。更重要的是,p-Si@MoC具有優(yōu)異的電化學性能,但仍可與其他硅基陽極相媲美。

圖3 多孔Si@MoC電池性能測試

要點三:p-Si@MoC材料促進鋰離子快速動力傳輸及原位儲鋰機制

p-Si@MoC材料引起具有的良好的孔結構和高度均勻分散的Si,使p-Si@MoC在重復鋰化/脫鋰的過程中仍保持優(yōu)異的結構穩(wěn)定性,電極表面薄且致密。MoC、p-MoC和p-Si@MoC電極在經(jīng)歷150次循環(huán)前后的電化學阻抗也證明了p-Si@MoC具有優(yōu)異的結構穩(wěn)定性。對比循環(huán)前后多孔Si@MoC負極變化,膨脹率僅有11.6%。因其獨特的多孔結構,在整個過程中與硅保持著密切接觸,有效地吸收了循環(huán)過程中硅顆粒增加的體積,減輕體積膨脹。此外,對電化學動力學過程進行研究,p-Si@MoC負極較高的鋰離子擴散系數(shù)(6.44×10?7 cm2 s?1)證實了多孔MoC構建的提供豐富的孔隙和離子開放通道,有利于電解液的滲透和鋰離子的擴散。

原位XRD測試結果顯示,顯示了在放電和充電過程中多孔MoC基體變化(MoC + xLi+ + xe? → Mo + LixC,放電過程中的反應)和LixSi的形成與解離,與CV曲線一致,證實了電極在循環(huán)過程中電化學的高度可逆性。

圖4 多孔Si@MoC電極表面穩(wěn)定性研究

圖5 多孔Si@MoC電極動力傳輸及原位儲鋰機制

文章鏈接

Ultra-Low 4.3 wt% Silicon Thermal Reducing Doped Porous Si@MoC as Highly Capable and Stable Li-Ion Battery Anode

Adv. Funct. Mater. 2024, 2314176

https://doi.org/10.1002/adfm.202314176

附:團隊近三年部分代表性論文:

[1] W. Huang*, S. Wang, X. Zhang, Y. Kang, H. Zhang*, N. Deng, Y. Liang, H. Pang*, Universal F4-modified Strategy on Metal Organic Framework to Chemical Stabilize PVDF-HFP as Quasi-Solid-State Electrolyte, Advanced Materials, 2023, 35(52), 202310147.

[2] Z. Chen, X. Lu, Y. Zhang,* Y. Kang, X. Jin,* X. Zhang, Y. Li, H. Wang,* and W. Huang*, Ultra-low 4.3 wt% silicon thermal reducing doped porous Si@MoC as highly capable and stable Li-ion battery anode, Advanced Functional Materials, 2024, DOI:10.1002/adfm.202314176.

[3] X. Zhang, Q. Su*, G. Du, B. Xu, S. Wang, Z. Chen, L. Wang, W. Huang*, H. Pang*, Stabilizing Solid-state Lithium Metal Batteries through In Situ Generated Janus-heterarchical LiF-rich SEI in Ionic Liquid Confined 3D MOF/Polymer Membranes, Angew Chem. Int. Ed., 2023, 62(39), 202304947.

[4] W. Huang, C. Su, C. Zhu, T. Bo, S. Zuo, W. Zhou, Y. Ren, Y. Zhang, J. Zhang, M. Rueping*, H. Zhang*, Isolated Electron Trap-Induced Charge Accumulation for Efficient Photocatalytic Hydrogen Production, Angew Chem., Int. Ed., 2023, 62 (25), 202304634.(VIP paper

[5] W. Huang,* X. Zhang, J. Chen, Q. Qiu, Y. Kang, K. Pei, S. Zuo, and R. Che*, High-density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra-Light Graphited Carbon for Adsorbing Electromagnetic Wave, Advanced Science, 2023, 2303217.

[6] X. Zhang, W. Huang*, L. Yu, M. García-Melchor, D. Wang, L. Zhi* and H. Zhang* Enabling Heterogeneous Catalysis to Achieve Carbon Neutrality: Directional Catalytic Conversion of CO2 into Carboxylic Acids, Carbon Energy, 2023, e362.

[7] W. Huang, T. Bo, S. Zuo, Y. Wang, J. Chen, S. Ould‐Chikh, Y. Li, W. Zhou*, J. Zhang, H. Zhang*, Surface decorated Ni sites for superior photocatalytic hydrogen production, Susmat, 2022, 2(4) 466-475.

[8] C. Feng, Y. Ren, F. Razq, W. Huang*, H. Zhang*, An innovative and ingenious strategy to construct single-atom catalyst for photocatalytic methane conversion, Matter, 2022, 5, 3086–3111.

[9] M. Sun, W. Cao, P. Zhu, Z. Xiong, C. Chen, J. Shu*, W. Huang*, Fan Wu*, Thermally tailoring magnetic molecular sponges through self-propagating combustion to tune magnetic-dielectric synergy towards high-efficiency microwave absorption and Attenuation, Advanced Composites and Hybrid Materials, 2023, 6: 54.

[10] Y. Ren, W. Huang*, M.A. Alsuhami, H. Zhang, J. Ye*, Subsurface engineering for efficient photocatalytic water splitting, Chem Catalysis, 2023, 3(8), 100707.

[11] P. Li, Z. He, X. Li, W. Huang*, and X. Lu*, Fullerene-Intercalated Graphitic Carbon Nitride as a High-Performance Anode Material for Sodium Ion Batteries. Energy & Environmental Materials, 2022, 5: 608–616.

[12] W. Huang*, Q. Qiu, X. Yang, S. Zuo, J. Bai, H. Zhang*, K. Pei and R. Che*, Ultrahigh Density of Atomic CoFe-Electron Synergy in Noncontinuous Carbon Matrix for Highly Efficient Magnetic Wave Adsorption. Nano-Micro Letters, 2022, 14(1): 96.

[13] W. Huang*, W. Gao, S. Zuo, L. Zhang, K. Pei, P. Liu and R. Che*, and H. Zhang*, Hollow MoC/NC Sphere for Electromagnetic Wave Attenuation: Direct Observation of Interfacial Polarization on Nanoscale Hetero-interfaces. Journal of Materials Chemistry A, 2022, 10: 1290-1298.(雜志封面Outside Front Cover)(高被引論文

[14] Y. Kang, J. Tang, J. Chen, M. Song, W. Wang, T. Liu, W. Huang*, “Appropriate dressing” non-fluorination strategy: Dopamine coating CuSiF6 framework derived F-rich SiC/CuF2@C electromagnetic wave absorber, Carbon, 2024, 218, 118690.

[15] W. Huang*, J. Chen, W. Gao, L. Wang, P. Liu*, Y. Zhang, Z. Yin, Y. Yang, “Host-Guest” crystalline Mo/Co-framework induced phase-conversion of MoCx in carbon hybrids for regulating absorption of electromagnetic wave, Carbon, 2022, 197: 129-140.

[16] W. Huang*, S. Wang, X. Yang, X. Zhang, Y. Zhang, K. Pei, R. Che*, Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core-shell nanofiber network for enhanced electromagnetic wave adsorption, Carbon, 2022, 195: 44-56.

[17] Y. Zhang, J. Chen, C. Su, K. Chen, H. Zhang, Y. Yang, W. Huang*, Enhanced ionic diffusion interface in hierarchical metal-organic framework@layered double hydroxide for high-performance hybrid supercapacitors, Nano Research, 2022, 15(10), 8983-8990.

[18] W. Huang*, X. Li, X. Yang*, H. Zhang, P. Liu, Y. Ma, and X. Lu, CeO2-embedded mesoporous CoS/MoS2 as highly efficient and robust oxygen evolution electrocatalyst. Chemical Engineering Journal, 2021, 420: 127595.

[19] Y. Li, X. Jin*, Y. Ma, L. Ma, J Liu, P. Zhu, Z. Deng, H. Zhou, W Chen, W. Huang*, Functional decoration on a regenerable bifunctional porous covalent organic framework probe for the rapid detection and adsorption of copper ions, Rare Metals, 10.1007/s12598-023-02476-w.

[20] Y. Zhang, J. Chen, F. Razq, C. Su, X. Hou, W. Huang*, and H. Zhang*, Polyoxometalate-incorporated host-guest framework derived layered double hydroxide composites for high-performance hybrid supercapacitor, Chinese Journal of Chemistry, 2023, 41, 75-82. (雜志封面Outside Front Cover

[21] X. Yang, W. Gao, J. Chen, X. Lu, D. Yang, Y. Kang, Q. Liu, Y. Qing, and W. Huang*, Co-Ni Electromagnetic Coupling in Hollow Mo2C/NC Sphere for Enhancing Electromagnetic Wave Absorbing Performance, Chinese Journal of Chemistry, 2023, 41, 64-74.

[22] W. Huang*, X. Li, X. Yang*, X. Zhang, H. Wang, H. Wang, The recent progress and perspectives on the metal- and covalent- organic frameworks based solid-state electrolytes for lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5 (9): 3593-3613.

新聞小貼士:

黃文歡,主要從事多氮唑雜化框架的設計合成,能源存貯及轉化、電磁波吸收屏蔽、固態(tài)電池關鍵材料的應用研究。入選“2023年度全球前2%頂尖科學家榜單”,陜西省特支計劃-青年拔尖人才、陜西省“科學家+工程師”創(chuàng)新團隊首席科學家、陜西省科技新星,近年來主持國家項目2項、省部級各類科研項目11項、教學項目4項,獲得陜西省高校科學技術獎一等獎(第1完成人)1項,陜西省人才計劃項目4項。在Angew Chem. Int. Ed.、Advanced Materials、Advanced Functional Materials、Advanced Science、Nano-Micro Letters、Carbon Energy、Matter、Journal of Materials Chemistry A、Energy & Environmental Materials、Chemical Engineering Journal等國際期刊上發(fā)表SCI論文50余篇,其中受邀撰寫綜述6篇,高被引論文7篇,熱點論文2篇。授權國家發(fā)明專利10余件,其中4件實現(xiàn)企業(yè)轉化。曾受邀請在國內(nèi)外學術會議上作報告20余次,媒體轉載相關研究成果20余次。組織學生參加“挑戰(zhàn)杯”課外學術科技競賽獲得省級二等獎2項、三等獎1項,獲得陜西省第六屆研究生創(chuàng)新成果展省級一等獎1項,省級創(chuàng)新基金1項;培養(yǎng)研究生獲得“優(yōu)秀畢業(yè)生”、“優(yōu)秀碩士畢業(yè)論文”、“國家獎學金”、“研究生高水平科研成果獎勵”等。

(核稿:黃文歡 編輯:王舒婷)

上一條:物理學院許并社教授團隊在《ACS Nano》上發(fā)表最新研究成果 下一條:我校強濤濤教授承擔的兩項國家標準和一項行業(yè)標準正式發(fā)布